Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Christian Näther* and Andreas Beck

Institut für Anorganische Chemie, Christian-Albrechts-Universität Kiel, Olshausenstraße 40, D-24098 Kiel,
Germany
Correspondence e-mail:
cnaether@ac.uni-kiel.de

Key indicators

Single-crystal X-ray study
$T=170 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.006 \AA$
R factor $=0.032$
$w R$ factor $=0.078$
Data-to-parameter ratio $=21.2$

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
© 2004 International Union of Crystallography
Printed in Great Britain - all rights reserved

Redetermination of catena-Poly[[(4-methyl-pyridine- κN) silver(I)]- μ_{3}-bromo]

In the crystal structure of the title compound, $\left[\mathrm{AgBr}\left(\mathrm{C}_{6} \mathrm{H}_{7} \mathrm{~N}\right)\right]_{n}$, the Ag and Br atoms form $\mathrm{Ag}-\mathrm{Br}$ double chains in which each Ag atom is coordinated by three Br atoms and the N atom of a 4-methylpyridine ligand in a distorted tetrahedral geometry. The asymmetric unit contains two Ag atoms, two Br atoms, and two 4-methylpyridine ligands.

Comment

The structure determination of the title compound, (I), was undertaken as part of a project on the synthesis, structure and reactivity of coordination polymers based on silver(I) halides and nitrogen-donor ligands. The structure of (I) had been determined previously by Healy et al. (1985) at room temperature in space group $P 2_{1} / n[a=10.286(5), b=$ 18.066 (9), $c=4.390$ (3) A. and $\beta=104.31$ (5) ${ }^{\circ}$]. Healy et al. (1985) pointed out that the 4-methylpyridine ligand is disordered and they assumed that the ligand oscillated about the $\mathrm{N}-\mathrm{C}-\mathrm{C}$ axis. We have performed a low-temperature determination at 150 K and found a unit cell in which the c axis is doubled. Refinement has been carried out in space group $P 2_{1} / n[a=9.9601(7) \AA, b=17.8849(10) \AA$ and $c=$ 8.8523 (6) \AA, and $\left.\beta=99.550(8)^{\circ}\right]$.

In contrast to the room-temperature determination, at 150 K , the asymmetric unit consists of two crystallographically independent Ag and two Br atoms, as well as two crystallographically independent 4-methylpyridine ligands (Fig. 1). Each Ag atom is coordinated by three Br atoms and the N atom of a 4-methylpyridine ligand in a distorted tetrahedral

Figure 1
Part of the crystal structure of the title compound with labelling and displacement ellipsoids drawn at the 50% probability level [symmetry codes: (i) $2-x, 1-y, 1-z$; (ii) $1-x, 1-y, 1-z$].

Received 4 October 2004
Accepted 5 October 2004
Online 9 October 2004

Figure 2
The crystal structure of the title compound, viewed along the b axis, showing the $\mathrm{Ag}-\mathrm{Br}$ double chains.
geometry. The Ag and Br atoms are connected into $\mathrm{Ag}-\mathrm{Br}$ double chains which are elongated in the direction of the a axis (Figs. 2 and 3). In contrast to the structure determined by Healy et al., we found no disorder of the ligand. In addition, we have refined the structure using low-temperature data in the small unit cell with halved c axis. In this case, the asymmetric unit consists of one crystallographically independent Ag and Br atom and one independent ligand which is disordered. The structure can be refined successfully using a split model and assuming a disorder in which the phenyl ring exhibits two different orientations about the $\mathrm{N}-\mathrm{C}-\mathrm{C}$ axis. Because of the different temperatures of the previous and the present investigation, we cannot exclude that, for example, a lowtemperature phase transition occurred. If our crystals are investigated at room temperature they immediately decompose completely. This was not the case for the previous determination because the crystals were sealed together with mother liquor into a capillary tube.

Experimental

$\mathrm{AgBr}(239.12 \mathrm{mg}, 1.28 \mathrm{mmol})$ was reacted with 4-methylpyridine $(2.0 \mathrm{ml}, 20.0 \mathrm{mmol})$ in a glass container at room temperature in the dark. After 7 d , colourless crystals suitable for X-ray structure analysis were obtained. A large amount of a crystalline powder was obtained by the reaction of $\mathrm{AgBr}(240.70 \mathrm{mg}, 1.28 \mathrm{mmol})$ in $4-$ methylpyridine $(2.0 \mathrm{ml}, 20.0 \mathrm{mmol})$ at room temperature with stirring for 3 d . The product was washed with diethyl ether and filtered off [yield (based on AgBr) 53.3\%]. Elemental analysis calculated: C 25.7, H 2.5 , N 5.0%; found: C 26.1, H 2.6, N 5.1%.

Crystal data

$$
\begin{aligned}
& {\left[\mathrm{AgBr}\left(\mathrm{C}_{6} \mathrm{H}_{7} \mathrm{~N}\right)\right]} \\
& M_{r}=280.91 \\
& \text { Monoclinic, } P 2_{\mathrm{d}} / n \\
& a=8.8523(6) \AA \\
& b=17.8849(10) \AA \\
& c=9.9601(7) \AA \\
& \beta=99.550(8)^{\circ} \\
& V=1555.05(17) \AA^{3} \\
& Z=8
\end{aligned}
$$

Figure 3
The crystal structure of the title compound, viewed along the the $\mathrm{Ag}-\mathrm{Br}$ chains in the direction of the a axis.

Data collection

Stoe IPDS diffractometer φ scans
Absorption correction: numerical
(X-SHAPE; Stoe \& Cie, 1998)
$T_{\text {min }}=0.444, T_{\text {max }}=0.502$
13360 measured reflections 3523 independent reflections

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.032$
$w R\left(F^{2}\right)=0.078$
$S=0.93$
3523 reflections
166 parameters
H -atom parameters constrained

2208 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.046$
$\theta_{\text {max }}=28.0^{\circ}$
$h=-11 \rightarrow 11$
$k=-23 \rightarrow 23$
$l=-13 \rightarrow 13$

Table 1
Selected geometric parameters ($\left({ }^{\circ},{ }^{\circ}\right)$.

Ag1-N1	2.307 (4)	Ag2-N11	2.302 (4)
Ag1-Br2 ${ }^{\text {i }}$	2.6460 (7)	$\mathrm{Ag} 2-\mathrm{Br} 1^{\text {ii }}$	2.6654 (7)
Ag1-Br1	2.7340 (7)	Ag2-Br2	2.7245 (7)
$\mathrm{Ag} 1-\mathrm{Br} 2$	2.8397 (6)	$\mathrm{Ag} 2-\mathrm{Br} 1$	2.8620 (6)
$\mathrm{Ag} 1-\mathrm{Ag} 1^{\text {i }}$	3.0792 (8)	$\mathrm{Ag} 2-\mathrm{Ag}_{2}{ }^{\text {ii }}$	3.1982 (9)
Ag1-Ag2	3.1078 (6)		
$\mathrm{N} 1-\mathrm{Ag} 1-\mathrm{Br} 2{ }^{\text {i }}$	120.68 (10)	N11-Ag2-Br1	98.36 (9)
$\mathrm{N} 1-\mathrm{Ag} 1-\mathrm{Br} 1$	102.63 (11)	$\mathrm{Br} 1^{\mathrm{ii}}-\mathrm{Ag} 2-\mathrm{Br} 1$	109.397 (19)
$\mathrm{Br} 2{ }^{\mathrm{i}}-\mathrm{Ag} 1-\mathrm{Br} 1$	113.166 (18)	$\mathrm{Br} 2-\mathrm{Ag} 2-\mathrm{Br} 1$	112.05 (2)
$\mathrm{N} 1-\mathrm{Ag} 1-\mathrm{Br} 2$	94.61 (9)	$\mathrm{N} 11-\mathrm{Ag} 2-\mathrm{Ag} 1$	107.76 (10)
$\mathrm{Br} 2{ }^{\mathrm{i}}-\mathrm{Ag} 1-\mathrm{Br} 2$	111.811 (19)	$\mathrm{Br} 1^{\mathrm{ii}}-\mathrm{Ag} 2-\mathrm{Ag} 1$	127.949 (17)
$\mathrm{Br} 1-\mathrm{Ag} 1-\mathrm{Br} 2$	112.45 (2)	$\mathrm{Br} 2-\mathrm{Ag} 2-\mathrm{Ag} 1$	57.825 (14)
N1-Ag1-Ag1 ${ }^{\text {i }}$	120.83 (10)	$\mathrm{Br} 1-\mathrm{Ag} 2-\mathrm{Ag} 1$	54.323 (15)
$\mathrm{Br} 2{ }^{\mathrm{i}}-\mathrm{Ag} 1-\mathrm{Ag} 1{ }^{\text {i }}$	58.891 (18)	$\mathrm{N} 11-\mathrm{Ag} 2-\mathrm{Ag} 2^{\text {ii }}$	126.68 (10)
$\mathrm{Br} 1-\mathrm{Ag} 1-\mathrm{Ag} 1{ }^{\text {i }}$	133.65 (2)	$\mathrm{Br} 1^{\text {iii }}-\mathrm{Ag} 2-\mathrm{Ag} 2{ }^{\text {ii }}$	57.575 (17)
$\mathrm{Br} 2-\mathrm{Ag} 1-\mathrm{Ag} 1^{\text {i }}$	52.920 (16)	$\mathrm{Br} 2-\mathrm{Ag} 2-\mathrm{Ag} 2{ }^{\text {ii }}$	126.43 (2)
N1-Ag1-Ag2	108.33 (10)	$\mathrm{Br} 1-\mathrm{Ag} 2-\mathrm{Ag} 2{ }^{\text {ii }}$	51.822 (16)
$\mathrm{Br} 2^{\mathrm{i}}-\mathrm{Ag} 1-\mathrm{Ag} 2$	130.481 (17)	$\mathrm{Ag} 1-\mathrm{Ag} 2-\mathrm{Ag} 2{ }^{\text {ii }}$	89.461 (18)
$\mathrm{Br} 1-\mathrm{Ag} 1-\mathrm{Ag} 2$	58.250 (15)	Ag2 ${ }^{\text {ii }}-\mathrm{Br} 1-\mathrm{Ag} 1$	110.57 (2)
$\mathrm{Br} 2-\mathrm{Ag} 1-\mathrm{Ag} 2$	54.302 (15)	$\mathrm{Ag} 2{ }^{\text {ii }}-\mathrm{Br} 1-\mathrm{Ag} 2$	70.603 (19)
$\mathrm{Ag} 1^{\mathrm{i}}-\mathrm{Ag} 1-\mathrm{Ag} 2$	91.131 (18)	$\mathrm{Ag} 1-\mathrm{Br} 1-\mathrm{Ag} 2$	67.427 (16)
$\mathrm{N} 11-\mathrm{Ag} 2-\mathrm{Br}^{1 i}$	124.10 (10)	$\mathrm{Ag} 1{ }^{\mathrm{i}}-\mathrm{Br} 2-\mathrm{Ag} 2$	110.69 (2)
N11-Ag2-Br2	104.56 (10)	$\mathrm{Ag} 1{ }^{\mathrm{i}}-\mathrm{Br} 2-\mathrm{Ag} 1$	68.189 (19)
$\mathrm{Br} 1^{\text {iii }}-\mathrm{Ag} 2-\mathrm{Br} 2$	108.030 (18)	$\mathrm{Ag} 2-\mathrm{Br} 2-\mathrm{Ag} 1$	67.873 (17)

[^0]
metal-organic papers

The aromatic H atoms were positioned with idealized geometry $(\mathrm{C}-\mathrm{H})=0.93 \AA)$ and refined with fixed isotropic displacement parameters $\left[U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}(\mathrm{C})\right]$ using the riding model. The positions of the methyl H atoms were idealized $(\mathrm{C}-\mathrm{H}=0.98 \AA)$, then refined with fixed isotropic displacement parameters $\left[U_{\text {iso }}(\mathrm{H})=\right.$ $\left.1.5 U_{\text {eq }}(\mathrm{C})\right]$ as rigid groups allowed to rotate but not tip.

Data collection: IPDS Program Package (Stoe \& Cie, 1998); cell refinement: IPDS Program Package; data reduction: IPDS Program Package; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997; program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: $X P$ in SHELXTL (Bruker, 1998); software used to prepare material for publication: XCIF in SHELXTL.

This work is supported by the state of Schleswig-Holstein. We are grateful to Professor Dr Wolfgang Bensch for financial support and the facility to use his experimental equipment.

References

Bruker (1998). SHELXTL. Version 5.1. Bruker AXS Inc., Madison, Wisconsin, USA.
Healy, P. C., Mills, N. K. \& White, A. H. (1985). J. Chem. Soc. Dalton Trans. pp. 111-116.
Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
Stoe \& Cie (1998). X-SHAPE (Version 1.03) and IPDS program package (Version 2.89). Stoe \& Cie, Darmstadt, Germany.

[^0]: Symmetry codes: (i) $2-x, 1-y, 1-z$; (ii) $1-x, 1-y, 1-z$.

